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Abstract- This paper present a single phase seven level photovoltaic (PV) inverter topology for grid connected PV 

system with a novel Pulse Width Modulation (PWM) control scheme. Three reference signals identical to each other 

with an offset equivalent to the amplitude of the triangular carrier signal were used to generate PWM signals for the 

switch. A Proportional Integral Derivative (PID) current control algorithm is implemented.to keep the current 

injected into the grid sinusoidal and to have high dynamic performance with rapidly changing atmospheric 

conditions. The inverter offers much less total harmonics distortion and can operate at near-unity power factor. 

Simulation results are compared with the conventional single phase three level and five level grid connected PWM 

inverter. The inverter is capable of producing seven level of output-voltage levels Vdc, 2Vdc/3, Vdc/3, 0, -Vdc, -2Vdc/3, 

-Vdc/3 from the DC supply voltage. Simulation results have been presented to demonstrate the suitability of the 

control method. Simulation results exhibits improved performance of the system. 

Keywords - Grid Connected, MLI, PV, PWM, THD, MATLAB/ SIMULINK. 
 

1. INTRODUCTION 
 

The ever-increasing energy consumption, fossil fuels‘ soaring costs and exhaustible nature, and worsening global 

environment have created a booming interest in renewable energy generation systems, one of which is photovoltaic. 

Such a system generates electricity by converting the Sun‘s energy directly into electricity. Photovoltaic-generated 

energy can be delivered to power system networks through grid-connected inverters. A single-phase grid-connected 

inverter is usually used for residential or low-power applications of power ranges that are less than 10 kW [1]. Types 

of single-phase grid-connected inverters have been investigated [2]. A common topology of this inverter is full-

bridge three-level. The three-level inverter can satisfy specifications through its very high switching, but it could 

also unfortunately increase switching losses, acoustic noise, and level of interference to other equipment. Improving 

its output waveform reduces its harmonic content and, hence, also the size of the filter used and the level of 

electromagnetic interference (EMI) generated by the inverter‘s switching operation [3]. Multilevel inverters are 

promising; they have nearly sinusoidal output-voltage waveforms, output current with better harmonic profile, less 

stressing of electronic components owing to decreased voltages, switching losses that are lower than those of 

conventional two-level inverters, a smaller filter size, and lower EMI, all of which make them cheaper, lighter, and 

more compact [3], [4]. Various topologies for multilevel inverters have been proposed over the years. Common ones 

are diode-clamped [5] – [10], flying capacitor or multi cell [11]–[17], cascaded H-bridge [18]–[24], and modified H-

bridge multilevel [25]–[29]. This paper recounts the development of a novel modified H-bridge single-phase 

multilevel inverter that has two diode embedded bidirectional switches and a novel pulse width modulated (PWM) 

technique. The topology was applied to a grid-connected photovoltaic system with considerations for a maximum-

power-point tracker (MPPT) and a current-control algorithm. 
 

2. PROPOSED MULTILEVEL INVERTER TOPOLOGY 
 

The proposed single-phase seven-level inverter was developed from the five-level inverter in. It comprises a single-

phase conventional H-bridge inverter, two bidirectional switches, and a capacitor voltage divider formed by C1, C2, 

and C3, as shown in fig. 2.1.  

The modified H-bridge topology is significantly advantageous over other topologies, i.e., less power switch, power 

diodes, and less capacitors for inverters of the same number of levels. Photovoltaic (PV) arrays were connected to 

the inverter via a dc–dc boost converter. The power generated by the inverter is to be delivered to the power 

network, so the utility grid, rather than a load, was used. The dc–dc boost converter was required because the PV 

arrays had a voltage that was lower than the grid voltage. High dc bus voltages are necessary to ensure that power 

flows from the PV arrays to the grid. A filtering inductance Lf was used to filter the current injected into the grid. 

Proper switching of the inverter can produce seven output-voltage levels (Vdc, 2Vdc/3, Vdc/3, 0, -Vdc, -2Vdc/3, -Vdc/3) 

from the dc supply voltage. The proposed inverter‘s operation can be divided into seven switching states, as shown 

in Fig 2.2 (a) to Fig. 2.2 (g). Fig. 2.2 (a), (d), and (g) shows a conventional inverter‘s operational states in sequence, 

while Fig 2.2 (b), (c), (e), and (f) shows additional states in the proposed inverter synthesizing one and two-third 

levels of the dc-bus voltage. 
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Fig. 2.1 Proposed Inverter Topology 

The required seven levels of output voltage were generated as follows 

  Maximum Positive Output (Vdc): S1 is ON, connecting the load positive terminal to Vdc, and S4 is ON, 

connecting the load negative terminal to ground. All other controlled switches are OFF; the voltage 

applied to the load terminals is Vdc. Fig. 2.2 (a) shows the current paths that are active at this stage. 

 Two-Third Positive Output (2Vdc/3): The bidirectional switch S5 is ON, connecting the load positive 

terminal, and S4 is ON, connecting the load negative terminal to ground. All other controlled switches 

are OFF; the voltage applied to the load terminals is 2Vdc/3. Fig. 2.2 (b) shows the current paths that are 

active at this stage. 

 One-Third Positive Output (Vdc/3): The bidirectional switch S6 is ON, connecting the load positive 

terminal, and S4 is ON, connecting the load negative terminal to ground. All other controlled switches 

are OFF; the voltage applied to the load terminals is Vdc/3. Fig.  2.2 (c) shows the current paths that are 

active at this stage. 

 Zero Output (0): This level can be produced by two switching combinations; switches S3 and S4 are 

ON, or S1 and S2 are ON, and all other controlled switches are OFF; terminal ab is a short circuit, and 

the voltage applied to the load terminals is zero. Fig. 2.2 (d) shows the current paths that are active at 

this stage.  

 

 One-Third Negative Output (−Vdc/3): The bidirectional switch S5 is ON, connecting the load positive 

terminal, and S2 is ON, connecting the load negative terminal to Vdc. All other controlled switches are 

OFF; the voltage applied to the load terminals is −Vdc/3. Fig.  2.2 (e) shows the current paths that are 

active at this stage.  

 Two-Third Negative Output (−2Vdc/3): The bidirectional switch S6 is ON, connecting the load positive 

terminal, and S2 is ON, connecting the load negative terminal to ground. All other controlled switches 

are OFF; the voltage applied to the load terminals is −2Vdc/3. Fig. 2.2 (f) shows the current paths that are 

active at this stage. 

 Maximum Negative Output (−Vdc): S2 is ON, connecting the load negative terminal to Vdc, and S3 is 

ON, connecting the load positive terminal to ground. All other controlled switches are OFF; the voltage 

applied to the load terminals is −Vdc. Fig.  2.2 (g) shows the current paths that are active at this stage.  
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Fig. 2.2 Switching Combination Required to Generate the Output Voltage (Vab). (A) Vab = Vdc. (B) Vab = 

2Vdc/3. (C) Vab = Vdc/3. (D) Vab = 0 (E) Vab = −Vdc/3. (F) Vab = −2Vdc/3. (G) Vab = −Vdc 

Table: 1 illustrates the level of voltage during S1–S6 switch on and off. This table also shows the output voltage 

according to the switches‘ On-Off condition 

Table-2.1 Output Voltage According to the Switches ON (1) – OFF (0) Condition 

 

3. PWM MODULATION  
 

A novel PWM modulation technique was introduced to generate the PWM switching signals. Three reference 

signals Vref1, Vref2 and Vref3 will take turns to be compared with the carrier signal at a time. Figure 3.1 shows the 

carrier and reference signals. If Vref1 had exceeded the peak amplitude of Vcarrier, Vref2 was compared with Vcarrier 

until it had exceeded the peak amplitude of Vcarrier. Then, onward, Vref3 would take charge and would be compared 

with Vcarrier until it reached zero. Once Vref3 had reached zero, Vref2 would be compared until it reached zero. Then, 

onward, Vref1 would be compared with Vcarrier. Fig. 3.2 shows the resulting switching pattern. Switches S1, S3, S5, 

Vo S1 S2 S3 S4 S5 S6 

Vdc,   1 0 0   1  0 0 

2Vdc/3   0 0 0 1  1 0 

Vdc/3 0 0 0 1 0  1 

0 0 0   1 1 0 0 

0
* 1   1 0 0 0 0 

-Vdc 0 1 0 0   1 0 

-2Vdc/3 0 1 
0 0 0 

 1 

-Vdc/3 0 1  1 0 0 
 1 
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and S6 would be switching at the rate of the carrier signal frequency, whereas S2 and S4 would operate at a 

frequency that was equivalent to the fundamental frequency. 

 

 

Fig. 3.1 Reference and Carrier Signals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Switching Pattern for the Single-Phase Seven-Level Inverter 
 

For one cycle of the fundamental frequency, the proposed inverter operated through six modes. Fig. 3.3 shows the 

per unit output-voltage signal for one cycle. The six modes are described as follows: 

Mode 1: 0< ωt < θ1 and θ4 < ωt < π  

Mode 2: θ1 < ωt < θ2 and θ3 < ωt < θ4  

Mode 3: θ2 < ωt < θ3  

Mode 4: π < ωt < θ5 and θ8 < ωt <2π  

Mode 5: θ5 < ωt < θ6 and θ7 < ωt < θ8  

Mode 6: θ6 < ωt < θ7. 

The phase angle depends on modulation index Ma. Theoretically, for a single reference signal and a single carrier 

signal, the modulation index is defined to be 

   
  
  

 

While for a single-reference signal and a dual carrier signal, the modulation index is defined to be [26]–[29] 

   
  
   

 

Since the proposed seven-level PWM inverter utilizes three carrier signals, the modulation index is defined to be 
 

   
  
   

 



Special Issue on Electrical System 

International Journal of Technical Research & Science (Special Issue)  ISSN No.:2454-2024 (online) 

 

DOI Number: https://doi.org/10.30780/specialissue-electrical system/004                                pg. 30 

Paper Id: IJTRS-ES-004  

 @2017, IJTRS All Right Reserved, www.ijtrs.com 

Where Ac is the peak-to-peak value of the carrier signal and Am is the peak value of the voltage reference signal 

Vref.  

Fig. 3.3 Seven-Level Output Voltage (Vab) and Switching Angles 

 

When the modulation index is less than 0.33, the phase angle displacement is  

                                          θ1 = θ2 = θ3 = θ4 = π/2  

                                          θ5 = θ6 = θ7 = θ8 = 3π/2  

On the other hand, when the modulation index is more than 0.33 and less than 0.66, the phase angle displacement 

is determined by 

       
  (

  
  
) 

                                       θ2 = θ3 = π/2 

                                       θ4 = π - θ1                                           

                                                       θ5 = π + θ1 

                                                       θ6 = θ7 = 3π / 2 

                                                       θ8 = 2π – θ1 

If the modulation index is more than 0.66, the phase angle displacement is determined by 

       
  (

  
  
) 

             
  (

   

  
) 

                                                      θ3 = π – θ2 

                                                       θ4 = π - θ1 

                                                       θ5 = π + θ1 

                                                       θ6 = π + θ2 

                                                       θ7 = 2π – θ2 

                                                       θ8 = 2π – θ1 

For Ma that is equal to, or less than, 0.33, only the lower reference wave (Vref3) is compared with the triangular 

carrier signal. The inverter‘s behavior is similar to that of a conventional full-bridge three-level PWM inverter. 

However, if Ma is more than 0.33 and less than 0.66, only Vref2 and Vref3 reference signals are compared with the 

triangular carrier wave. The output voltage consists of five dc-voltage levels. The modulation index is set to be 

more than 0.66 for seven levels of output voltage to be produced. Three reference signals have to be compared 

with the triangular carrier signal to produce switching signals for the switches. 
 

4. SIMULATION MODEL & RESULT ANALYSIS 
 

A simulation in MATLAB/Simulink utilizing Sim Power System was conducted to investigate the effectiveness of 

the developed single phase seven level inverter for grid connected PV system. It was simulated for 0.045 seconds 

with a sampling period of 1 µs. The simulation modeling is shown in figure 4.1. 
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Fig. 4.1 Simulation Model of Single Phase Seven Level Inverter for Grid Connected PV System 

 

MAT LAB SIMULINK simulated the proposed configuration before it was physically implemented. The PWM 

switching patterns were generated by comparing three reference signals (Vref1, Vref2, and Vref3) against a triangular 

carrier signal as shown in figure 4.2.  

Subsequently, the comparing process produced PWM switching signals for switches S1–S6, as shown in figure 4.3. 

One leg of the inverter operated at a high switching rate that was equivalent to the frequency of the carrier signal, 

while the other leg operated at the rate of the fundamental frequency (50 Hz). Switches S5 and S6 also operated at 

the rate of the carrier signal. Fig. 4.4 shows the simulation result of inverter output voltage (V). Fig. 4.6 shows the 

simulation result of inverter output current (A).  

Table 4.1 shows the value of simulation parameters used during the simulation work, Table 4.2 shows the 

comparative THD analysis of multilevel inverter and fig. 4.7 show the FFT analysis of single phase seven level 

inverter. 

Fig. 4.2 PWM Switching Signal Generation 

Fig. 4.3 PWM Signals for Switches S1-S6 
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Fig. 4.4 Inverter Output Voltage 

 

 

Fig. 4.5 Inverter Output Current 

 

Fig. 4.6 FFT Analysis of Single Phase Seven Level Inverter Output Voltage 
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Table-4.1 Simulation Parameters 

Table-4.2 THD Analysis of Multi-Level Inverters 

The simulation results are presented to validate the effectiveness of the developed inverter control system algorithm. 

In addition, to assess the capability of the developed system protection, the disturbances in grid voltage and 

frequency are introduced. The disturbances are over voltage, under voltage, over frequency and under frequency. 

For grid-connected mode, the injected current must be nearly sinusoidal with a unity power factor and 1.51 % of 

total harmonic distortion (THD).      
 

CONCLUSIONS 
 

The simulation results are presented to validate the effectiveness of the developed inverter control system algorithm. 

In addition, to assess the capability of the developed system protection, the disturbances in grid voltage and 

frequency are introduced. The disturbances are over voltage, under voltage, over frequency and under frequency. 

For grid-connected mode, the injected current must be nearly sinusoidal with a unity power factor and 1.51 % of 

total harmonic distortion (THD). The less THD in the seven-level inverter compared with that in the five and three-

level inverters is an attractive solution for grid-connected PV inverters. The THD in the proposed seven-level 

inverter compared with that in the seven-level inverter, five level inverters and three-level inverters is 1.51%, 3.9%, 

5.4% and 8.0% respectively. The presented results showed that the inverter control algorithm is successful in 

converting PV dc power to ac power with acceptable THD level for supplying power to the load and grid as well. In 

addition, the system manages to regulate the 50Hz sinusoidal output voltage and response to the grid voltage and 

frequency disturbances effectively. Overall, this investigation has proved the good performance of the developed 

inverter control system algorithm. 
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